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SOME PROPERTIES OF CONDENSING MAPS

Paul Massatt

1. Introduction.

In 1939, Kuratowskii ([19] introduced a measure of noncompacthess
of bounded sets in a metric space, called the Kuratowskii measure of
noncompactness, or @-mcasure. This along with the associated notion
of an a-contraction, has proved use@8ful in several areas of differ-

ential equations (see, for example, [12], [14], and [25]).

Definition. Let X be a metric space. The o-measure is a map

a: 4 > [0,0), where % = {B C X/B is bounded} and o(B) =

inf{d/ there is a finite cover of B with sets in X whose diameter
is less than d}.

Definition. T: X » X is an 4¢-contraction if there is a k € [0,1)

such that for all B ¢ 4 we have «(TB) < ku(B).

To generalize this notion people began to investigate

@-condensing maps.

Definition. T: X » X is a-condensing if for all B € % we have

@ (TB) < o(B) with equality if and only if a(B) = 0.

The basic problem is to understand which properties of
a-contractions also hold for a-condensing maps. Recently, Richard
Leggett [20] showed that if X is a Banach space, T 1is linear

and a-condensing, then there is an equivalent norm in X for which

T is an a-contraction in the new norm. Sadovskii [25] showed by




transfinite induction that @-condensing maps have the fixed point
property-extending a result of Darbo [9]) for o-contractions.

Another important contribution showing how many properties of

a-contractions arc true for a-condensing maps was made by Cooperman
[8]. Cooperman developed an ingenious technique which exploited |
special properties of the a-measure.

The principle results of this paper will be to generalize
several of the resuits of Cooperman to morec gencral measures of non-
compactness as well as for certain set mappings. The proofs are
more elementary than the ones in Cooperman. However, the basic
lemma used by Cooperman which depended so much on properties of
a-measures is not generalized. In fact, we give an example showing
that it will not generall& be valid for arbitrary measures of non-
compactness.

Section 2 contains only notation and definitions. In section 3
we prove that a decreasing sequence of nonempty.closed bounded sets 3
with general measure of noncompactness approaching zero must have ’
nonempty intersection. In section 4 we show condensing maps are
asymptotically smooth. In section 5 we show the solution map TAx =y
as a function of y for {TX} collectively condensing is upper
semi-continuous with mild continuity assumptions on T,. In
section 6 we show results proved using Sadovskii's method of trans-
finite sequences may be proved using ordinary sequences. We reprove
a theorem by Hale and Lopes that a-condensing, compact dissipative
maps have a fixed point, and show this holds for general measures
of noncompactness. In section 7 we discuss the basic lemmas of

Cooperman and their validity for general measures of noncompactness.

In seciton 8 we show linear condensing maps with general measures of
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noncompactness are %-contractions under some equivalent norm.

2. Definitions and Notation.

Let X be a complete metric space, or a complete metrizable
linear topological vector space. When we speak of distance in the
latter case we may usc any metric coinciding with the topology
on X. Let 424 be the collection of bounded subsets of X. For
any subset B of X, let C1(B) denote the closure of B. Let ¥

be the collection of subsets of X.

Definition 2.1. For any sequence {Bn}:=l C 4, the w-1limit set

of {B_} is defined by w({B_}) = f% Cl1(U B.), or equivalently
“ i k=1  j>k J

w({B }} = {y € A: 3 integers m, > =, % & Bnk such that = =+ yl.

Definition 2.2. A set A C X attracts a sequence of sets

{Bn}n=1 (D R d(Bn,A) + 0 as n > =,

Definition 2.3. If H: ¥ » ¥ and B € ¥, the orbit Y,(B)C ¥

under H is defined by v;(B) = UH"(B). The w-limit set w,(B)
n=0

of B under H is defined by w,(B) = o ({H"(B)}) = N c1(U H)(B)).
H H L ;
k=1 j>k
When no confusion arises we may drop the subscript, H.

Definition 2.4. A subset U C ¥ (i.e., a collection of subsets

of X) is invariant under H: ¥ » ¥ i€ - HU = U, It is

positively invariant if HU C U.

If T: X+ X is a map on X, then T induces a map in: ¥ -+ ¥
e

AR
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by the relation i, (B) = U Tx for any B € ¥ . The above
X €B

definitions coincide with the usual definitions of w-1limit set and

invariance.

Other mappings on a collection of subsets of X are useful.:

We make the following definitions.

Definition 2.5. If H: ¥ -~ ¥ 1is a given map, we say

]

H is of type 1 if H(B) U{H(x): x € B}
H is of type 2 if H(B)

finite subset of B}.

1]

U{H({xi}): {xi} is any

)

H 1is of type 3 if H(B) = UIH(K): K CB 1is compact}.

Similar definitions apply for H: @ » ¥ or U: 2 + @B

A set operator of type 1 is a set operator of type 2 which in
turn is a set operator of type 3. If H1 and ‘”2 are set operators

of the same type n, for n =1 or 2, then HloHZ' is a set operator

of type n. This property may not hold for operators of type 3.

Examples:
(k) If T: X+ X then ig: € » ¥ detfined by ip(B) =
U{Tx € X/ x € B} is of type 1.
(ii) If T: X » X, then Y': ¥+ & defined by Y'(B) =
positive orbit through B is of type 1.
(iii) If T: X » ¥ is a set valued map on X, then the map
ip: & » % defined by ip(B) = U{Tx & ¥: x € B} is of type 1.

(iv) 1f C e ¥ is given, then H: ¥ + ¥ defined by either

H(B) = B UC, BNC, or B + C, is of type 1.




(v) H: ¥ > % given by H(B)

"

co B = the convex hull

of B 1is of type 2.
(vi) H: ¥ = % given by H(B)

C1({B) is5 'of type 3.

Definition 2.6. A mcasurc of noncompactness on X 1is a map

B: # ~ [0,») with the properties that (i) B(B) 0 if and only

if Cl1(B) is compact and (ii) B(B) < B(C} if B C C, ‘

The @-mecasure of noncompactness of Kuratowskii defined in the

———

introduction is a measure of noncompactness. It satisfies many
more properties, some of which will be required below. They will |
be introduced as nceded since one of our objectives is to understand 1

which basic properties of the “-measure imply certain results.

-

Definition 2.7. If H: @4 » @ , then H is a B-contraction if there

is a k € [0,1) such that B(H(B)) < kB(B) for any B ¢ 4. H

is B-condensing if for each B e 4, g(H(B)) < g(B) with equality
if and only if g(B) = 0. If T: X = X and maps bounded sets to
bounded sets, we say T 1is a B-contraction (B-nonexpansive, -
B-condensing) if the induced map ig: P > B is a B-contraction
(B-nonexpansive, B-condensing).

In the applications it is sometimes convenient to not assume
H: 4 - 4 but only that H: @ » ¥; that is H may not take
bounded sets into bounded sets. One then calls the map a

conditional B-contraction (conditional B-nonexpansive, conditional

TP S

B-condensing) if the above properties hold for each B ¢ % for

B

which H(B) €¢ 4. The results below hold in this more general
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situation, but we do not explicitly state and prove them in this

generality since it is only a minor technical detail.

Definition 2.8. Let Hl: ¥ -» % and let S be a collection of

sets. A bounded set B dissipates S-sets under H if for any

C € S, there is an integer nO(c) such that Hn(C) C B for

n > nO(C). If 8 = {{x}: x € X} we say H is point dissipative,

if s = {{J}: JCX is compactl we say H is compact dissipative;

if S contains a neighborhood of any point x ¢ X, we say H is

local dissipative if S contains a neighborhood of any compact set,

we say H 1is local compact dissipative; if S contains all bounded

sets of X (S = 4), we say 1 1is bounded dissipative or ultimately

bounded.
If H 1is type 2 and continuous in the Hausdorff metric, then
compact dissipative, local dissipative and local compact dissipative

are equivalent.

Definition 2.9. A map H: 4 -+ % is asymptotically smooth if, for

any B € 4 such that yrl(B) C 4%, there is a compact set JC X

such that J attracts B under H.

(SEE PAGE 6A FOR INSERT)
Lemma 2.1. If T: X > X 1is a given map and ip: ¥+ ¥ is
the map induced by T, iT(B) = U{Tx: x € B}, Fhen the following
are equivalent to ip: being asymptotically smooth:

(1) for any B € 4 such that Y+(B) € 4@, there is a compact

set J that attracts B under T;

Py .
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Asymptotically smooth maps play an important role in

stability theory. In fact, it is known (see [8], [14]) that

H asymptotically smooth and compact dissipative implies there

is a maximal compact invariant set J for I which attracts

neighborhoods of compact sets. In particular, J is uniformly

asymptotically stable. It is important therefore to give

other characterizations of asymptotically smooth maps.




Lemma 3.1. If {B_}~

(2) for any B ¢ 4 such that TB C B there is a compact
set J that attracts B under T.

(3) for any B € %4 there is a compact set J such that,
for any € > 0, there is an integer nO(B,E) such that TMx € B

for n > 0 implies d(Tnx,J) < & for n > nO(B,E).

Lemma 2.1 suggests other definitions of asymptotic smooth for
mappings H: 4 » 7% . More precisecly onec could define asymptotic
smooth of type (j), j = 1,2 by the relations (1) and (2) in
Lemma 2.1, with T replaced by H. One finds asymptotic smooth (2)

defines a smaller class than asymptotic smooth (1).

3. A Property of Measures of Noncompactness.

A classical result for the @-measurc of noncompactness is that
a decreasing sequence {Bn} of closed bounded sets with u(Bn) a1
has the property that d(Bn,J) + 0 as n > o for some compact set J.
[t is the purposc of this section to show this result is true for
more general measures of noncompactness. We need the following

lemma.

nin=1 1s a sequence of bounded sets in X with

the property that every {Xk}z=1 C X 1is precompact if there is a

sequence of integers By % with Xy € Bn , then w({Bn}) is

k
nonempty, compact, and attracts Bn

Proof: w({Bn}) = {y € X/ there ecxists N + ®, X € Bn such that

k

{xk} converges to y}. w(Bn) is nonempty since any sequence




sequence X, g Bn with RBg 2 has a converging subsequence in
k
which must converge to a point in w([Bn}). w({Bn}) is precompact

since if we let {y,} be a sequence in w({B_}) then there is a
k n
_ . -k
K € Bnk with d(xk,yk) <HOE SRR {xk

convergent subsequence, hence so does {yk}. All that is left is to

sequence mn, > @, X } has.a

show w({Bn}) attracts B . Supposc it does not. Then there is
an € > 0, By omy g, o Bnk with d(xk,w({Bn})) > €. But x, i
has a converging subsequence which must converge to a point in ‘

w({Bn}). This is a contradiction. Q- E=Di

sk s

Theorem 3.1. If £ is a measure of noncompactness satisfying

B(A UB) = B(A) if B 1is a finite set then any decreasing

sequence {Bn} C 4 of nonempty closed bounded sets satisfying

B(Bn) > 0 must have 0 Bn nonempty, compact, and attracting Bn‘
n

Proof: Let Bn be a decreasing sequence of nonempty closed bounded

sets with B(B.) - 0. Clearly w(B.) = B . Let n, » » and
n n ) 1 k

Ry € Bnk. Then B({xk}) < B(BN) for any N since {xk} minus a
finite number of points is a subset of Bn‘ But then B({xk}) =0

and {xk} is precompact. Lemma 3.1 implies the result.

4. Dissipative Processes.

The basic result of this section relates B-condensing maps

to asymptotically smooth maps.

Theorem 4.1. Suppose R 1is a measure of noncompactness satisfying

B(AUB) = B(A) if B is a finite set. If H: @ +@ is




g

R -condensing and of typec 2 (sec Definition 2.5), then H is

asymptotically smooth.

Proof: Let B be bounded and Y+(B)
n
k
{{xk,ni /{nk} st e T H "(B)}. Let
n = sup{B(Ph)/h ¢ Z(B)}. Note n <

be bounded. Let Z(B)
P({xk,nk}) {xk}. Let

© since Y+(B) is bounded.

We first show therec is an h* = {xi,ni} € 2(B) such that

B8(Ph®) = n. Let (h;} C2(B) beas

= . %
hj = {(xk,nk) € hj/nk * jF. Let B

Then we have h* € 2(B) and so n >
as j =+ <. Hence, B(h*) = n.

Now for ecach (x;,ni) e h* ther
n -1 .
k % J*
H (B) * Z such that x; € H({xk i

Hence n > B(g*) > B(Hg®) > B(h*) = n

if B(g*) = 0. Hence n = 0.

Now Lemma 3.1 implies there is a

attracts {H"(B)}, or attracts B und

Corollary 4.1. If B8 satisfies the

T: X » X 1is B-condcnsing, then T i

Corollary 4.2. If B satisfies the

T: X > % is B-condensing, then T 1

Corollary 4.3. If B-satisfies the ¢

B(co B) = B(B), T: X » X 1is B-conden

cquence with B(Phj) + n. Let

0
A

= hj reordered in any way.
1

j=
B(h™) > 8(h;) = B(hy) > n,

; m
Sy e k
e is a set {x; ,n Hj=1 G
@ g m
3 * % J* *- k
Let g Qﬁl{xk )Ny 1}j=l

with equality if and only
J C X compact, which
er the map H.

conditions of Theorem 4.1 and

s asymptotically smooth.

conditions of Theorem 4.1 and

s asymptotically smooth.

onditions of Theorem 4.1 and

sing, and H: 4+ @ is defined

€ (B).

s e L dd o0
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H(B) = co T(B) then I is asymptotically smooth. Furthermore,
if T is continuous, then I: %4+ 4 defined by ﬁ(B) = cl H(B)

is asymptotically smooth.

Proof: I is clearly B-condensing and type 2, hence we have the
first part of the corollary. For the second part we note
H(cl B) C cl H(B). Using this we get " (B) C c1 HY(B) and so

P

H 1is asymptotically smooth.

Corollary 4.4. If B satisfies the conditions of Corollary 4.3,
T: X+ X is B-condensing, P C X is compact, and H: @ » @ is
defined by H(B) = co(T(B) UP) then H is asymptotically smooth.

If T 4is also continuous, then H 1is also asymptotically smooth.

Corollary 4.5. If B is a measurc of noncompactness satisfying

B(A UB) = max{B(A),B(B)} and H 1is B-condensing, then Y;: b ~ B

. . o .
implics Yy 1s B-nonexpansive.

Proof: Assume B(Y;(B)) > B(B). Then s(v;(n)) = B(B LiHY;(B)) =

max{B(B), B (B))} = B(lv(B)) < B(Y;(B)) which is a contradiction.

The last three corollaries are useful in showing several fixed
point theorems proved by Sadovskii's method of transfinite sequences

may be proved with ordinary sequences. This is illustrated in

Section 6.

Theorem 4.2. Let £ be a measure of noncompactness satisfying

B(AUB) = B(A) if B 1is a finite set and either (1) B is continuous

st e sl
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in the Hausdorf{f metric or (2) £(B) = B(B), and B(A + B) = B(A)
if B(B) = 0.
If H: 4 » 4 is R-condensing and type 3, then H is

asymptotically smooth.

n
Proof: Let B,Y'(B) ¢ #. Let 2'(B) = {{J,n}/ J, CH k),
n

B(J)) = 0, np » =}, Let 2(B) = {{xy,n}/x; eH k), n, » },
p'h' = p'{Jk,nk} = U Jk o e =GN ph = p{xk,nk} =

k
L}{xk} for ' h € Z(B). Let n' = suplBlp'R')/h' ¢ Z'(B)}. Let
k

n = sup{g(ph)/h € 2(B)}. We first show n = n', This takes the

most work. By the method of Thcorem 4.1, we show there exists

- [ ' il
hi* ¢ 9'(B) with B(h") = n'. Let h* = (5"} and
MGESIPRY B e T
1, = {‘k ,nk} with Jp a finite set satisfying (.k Iy g s
* * "% 1%
and Ji CRJL . We claim B(h2 ) = B(h]‘). Both are in @'(B).
: AT Gt R .f' ik
Case (i): Let Y, = (Rk ,nk} with Rk =i i k > 4% an Rk
. A . 9% 1% A -2 :
is a finite set with Rk (@ Iy ,d(Rk ’Jk 2 if k < 2. Then

L % 1% (3 %
B(h2 ) = B(Yg) i B(h1 ). Hence, B(h2 ) = B(hl it

et ; 1k 3% % P 3% 1%
Case (ii): Let h3 = {Jk ,nk} € Y'(B) with Jy C Jk countable

1% (K3 L
and dense in Ji . Clearly, B(h3 ) B(h1 ). Now for each point

* -
z? € Ji there is an x% € Ji*, y? € X with z? = x? + y? and
Rk is 2% = SRR T R s i J5% L LoW
fygt = d(25,d0 ) < 277, The set fyy/lyy| » 2 }c:sglxk . ;ﬁle

and hence is compact.
§ince r is arbitrary we know {y?} is compact. Now
(] (7 () (' : ¢ %k 1%
h3 C h2 + {yi} and h2 C h3 - {yi} implies B(h3 ) = B(h2 i
' ]
This shows B(h; ) = B(h, ).
But h;* e Z(B) also (when reordered). Hence, N> n', It

*
is obvious that n< n'. Hence n= n', Now let h € Z(B) with

*
B(h ) = n(constructed as is Theorem 4.1). Since H is of type 3

By
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there is an h' € Z2'(B) such that hw CH(h'). We get
n > BCh') > B(H(Kh')) > B(h*) = n, with equality if and only if
B(h') = 0. Hence, we have n = n' = 0. Now we may apply Lemma 3.1

to obtain the result.

5. Continuous Dependence on Parameters.

Here we look at a result proved originally by Artstein (2] for
u-contractions. The result was extended to «-condensing maps by
Cooperman and will now be generalized to arbitrary measures of

noncompactness.

Definition 5.1. We say that a convergence structure is given for

a set V if itO certain nets {vn,n € N} in V (called the
convergent nets) therc corresponds an element v in V, denoted by
lim Vs SO that the following conditions are fulfilled.

(a) If P vn then 1lim Wy W

b IE o Lim Voo and {vn} is a subnet then 1lim e ® ¥

(c)' 1153 {vn} does not converge to v then a subnet of {vn}
exists, no subset of which converges to v.

A set with a convergent structure on it is called a convergence

space. Not every convergence space is topological. See Kelley [18]

on the '"convergence of the iterated limit" property.

Definition 5.2. Let % = {U,} be a set of operators U,: X + X

with a convergence structure on it. Then ({U,} is a collective

B-contraction if there is a k € [0,1) such that for all B ¢ ¥

we have B(l£ UyB) < kB(B). {Uy} is collectively B-condensing if
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vB e 4, (U UyB) < B(B) with cquality if and only if B(B) = 0.
A

Definition 5.3. A multi-valued function % from the convergence
space % to the convergence spac¢ # is Lu-continuous if

lim u, = U, W € j7(un), and 1lim W =W implies w € %(u).

Remark., If % and # are topological spaces this is equivalent

to the graph being closed.

The following lemma is proved by Artstein in [2] and only

stated here.

Lemma 5.1. Let {yk/.k e K} be a net which is contained in a
bounded set of X. Denote by Ay the set {ym/ m > k}. If the
numbers a(Ak) converge to zero then there is a convergent subnet

{yn, n € N}  of {yk}.

Definition 5.4. B is semi-invariant with respect to 2 if for

all x e B there is a U e % with x = Ux.
For the next theorem we will also use the following lemma.
Lemma 5.2. Let % be a collectively B-condensing family of

operators. Let the f-measurc of noncompactness satisfy B(A+B) = B(A)

if B(B) = 0. Then 9 collectively B-condensing implies a(Bi) + 0

as i » =,
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Proof: Let {2.} » > and x. € B .. Wec will show {x.} has a
_— 1 i 21 i

converging subsequence, and then apply Lemma 3.1.

Since x; € By, there is {Ti}’{yi} > yO such that

X; = Tixi . chet WX % X be defined by U,x = Tix ot e
Since {y;} » v,

it is precompact. Also U U;B C L)'Fi(B) * iy.}
3 i
so B(UU;(B)) < 8(UT, (B) + {y;}) = B( UT,(B)) < B(B) with
i i i

equality if and only if B(B) = 0. lence {U;} is collectively
B-condensing. Now since {xi} is semi-invariant with respect to

{Ui} it is precompact. This completes the proof of the lemma.

Theorem 5.1. Let X be a metric space. Let ¥ be a collectively

B-condensing family of operators. Let the B-measure be as in
Lemma 5.2. If for a certain convergence structure on ¥, the map
s(T,y) = {x/ Tx = y} is Lu-continuous, then for every closed and
bounded B the mapping s(T,y) NB: 9 x X » X. is upper semi-

continuous.

Proof: We first make the following remark. If % is collectively
B-condensing and B is semi-invariant with respect to % then
B(B) = 0. This is a trivial consequence of the definitions.

Let {(Tk,yk)} > (Ty,y,) be a converging net with T, ¢ g

and y, € X. Let X, = TyXp + Ypo and X, € B. We must show {xk}

converges to the set s(T,yo) N B. We notice s(T,yo) NB is

compact since if we define ;X "R By Ty {x)en Tx ¢ Yo then
0

T
Y0
T AR-condensing implies Ty is PB-condensing. Furthermore, since
0
s(T,yo) M B is invariant with respect to Ty , it is precompact.
0

Now, by the Lu-continuity of s(T,y) it suffices to prove the
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existence of a convergent subnet. Let Ay = {xn/ n > k}. There
are ki such that /\ki C Bi with Bi defined in Lemma 5.2.
Lemma 5.2 limplies U(Bi) » 0 which implies u(Aki) - 0, or
a(Ak) + 0. Lemma 5.1 implies there is a convergent subnet. This

completes the proof.

6. Fixed Point Thcorems.

We begin by stating two theorems previously proved by Sadovskii's
method of transfinite sequences, and show they can be proved using
ordinary sequences. Then we will reprove a result of Hale and Lopes,
which used Zorn's 1lemma, and show this can also be proved without
using Zorn's lemma.

The first is due to Sadovskii and is found in [25].

Theorem 6.1. Let T: X > X be B-condensing and. continuous. Let

the B-measure satisfy B (A UB) = g(A) if B 1is finite and |
p(co A) = B(A) for any A € 4. Let B C X be closed, bounded,
convex, and positively invariant (i.e. T(B) CB). Then T has a

fixed point. 3 !

Proof: Let H: &4 + @ be defined by H(B) = co T(B). Then H is

A" (B)
i

asymptotically smooth by Corollary 4.3. Therefore, @ (B) =
H n=1
S,

is compact, convex, invariant under H, and attracts B. It
thercfore positively invariant under T. Schauder fixed point

theorem implies T: w_(B) » w_(B) has a fixed point.
H H

The second theorem is a nonrepulsive fixed point theorem by Mario

Martelli [22].
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Definition 6.1. Let Y Dbe a nonempty subset of a topological

space X and f: Y » Y be continuous. A point X, € X is said 3

to be a repulsive fixed point for ¥ if (i) HF(x = X

0) 0’
(ii) there exists a neighberhood U of X such that for any

neighborhood V of X there exists an n, with the property that 1

U #"(Y\W) CY\ U, & is a nonrcpulsive fixed point if it is not
n>n :
— 0

a repulsive fixed point.

We will use the following theorem of Browder [5].

Theorem 6.2. Let C be a compact, convex, infinite 1

dimensional subset of a Banach space X and let %: C > C be

continuous. Then % has a non-repulsive fixed point.

Theorem 6.3. Let B be a closed, bounded,'conyex,'and infinite

dimensional subset of a Banach space X and let T: B> B be a
continuous B-condensing map, with B satisfying B(A UC) = B(A)
if C is a finite set, and B(co'A) = B(A). Then T has a non- |

repulsive fixed point.

Proof: Let % C B be compact and infinite dimensional. Let
Hy: @ +» @B be defincd by Hl(A) =AUP. Let H,: DB > D be
defined by HZ(A) = co A. Let H: H2°H1°T. Il is B-condensing,
T’"l’ and "Z are of type 2, hence so is H. Thus, Theorem 4.1
implies H is asymptotically smooth. Continuity of T implies

H(C) C H(C) which implies H is asymptotically smooth. Hence,

wﬁ(B) = N ﬁ"(B) is compact, ~-dimensional, invariant under H,
n=1
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and attracts B. It is also positively invariant under T.

Theorem 6.2 implies T: wﬁ(B) > wH(B) has a non-repulsive fixed

point.

The next theorem originally proved by Hale and Lopes [16] is
reproved here in more detail, to end any confusion as to its
validity. It is followed by a simpler proof that does not use

Zorn's lemma (which Hale and Lopes use to prove result 3 above).

Theorem 6.4. Let T be B-condensing, continuous, and compact

dissipative. With B a measure of noncompactness satisfying

B(A UB) = max[B(A),B(B)] and B(co A) = B(A). Then T has a

fixed point.

The proof by Hale and Lopes and the results we use below are

also found in Hale [14].

Result 1. Il compact, T B-condensing, Y+(H) bourded implies Y+(H)

is precompact and w(H) is compact, invariant and attracts H.

Result 2 (llorn [17) ). 1If So G 8y € S2 are convex subsets of X,

1
SO’SZ compact, and S1 relatively open in Sz, T: s2 + X is
continuous, Y+(Sl) C SZ’ and SO dissipates Sy the T has a

fixed point.

Result 3 (Lemma 4.1 in Hale [14}). Suppose KC B CS are convex

subsets of X with K compact, S closed and bounded, and B open

A il
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in S. If T: § =+ X ‘s continuous, Y+(B) €C §, and K attracts
points of B, then there is a closed, bbunded, convex subset A of

S such that A =colUT/ (B NA}, ANK # P.
j>1

Result 4. Lemma 4.3 (Hale [14)): T B-condensing with B satisfying
the conditions of Theorem 6.4 then the set A in Result 3 is

compact.

The proof of Result 4 is given in [14] for «-condensing but

generalizes immediately to B-condensing.

Proof 1 of ‘Theorem 6.4. Let By = {x/ |x| < R} dissipates compact

sets. Since orbits of compact sets are dissipated by BR’ they are

bounded. Hence, Result 1 holds for any compact sct. Furthermore,

for any compact set H, w(H) C BR since w(ll) is compact and in-
variant. Let J = {w(H)/ HCX compact}, J C B and is invariant,
hence it is precompact. It also attracts compact sets. Let K = co J.
There is a ncighborhood ”1 = K + B, of K whose orbit Y;(Hl) is
bounded. This is because compact dissipative and local compact

dissipative are cquivalent when T is continuous. Let ”0 = K + BE/Z'

Result 3 implies there is a set A = co{ LJTJ(Hl N A)}. Result 4

izl
implies A 1is compact. Let S0 = H0 N Al’ S1 = “1 N A, and
S2 = A. Clearly, Y+(Sl) G SZ' Also S1 is compact and K attracts
compact sets, so H0 dissipates Sl' This implies S0 dissipates

Sy and Result 2, Horn's theorem, implies T has a fixed point.

it o i

.

ISP
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: Proof 2 of Thecorem 6.4: TB-condensing implies T is asymptotically
: smooth. llence, for any B ¢ 4 such that Y+(B) € 4 we have )
: w(B) is compact, invariant, and attracts B. Let B be a ball of ]

R
radius R which dissipates compact sets. Then w(B) C BR. Let

J = UuU{w(B)/ B, Y+(B) € 4}. We have J precompact, invariant,

and attracts any B & 4 for which Y+(B) e P also. In
particular, it attracts ncighborhoods of compact sets, since compact
dissipative and local compact dissipative are cquivalent. Let

K = C1L co J. There is a neighborhood H; = K + B, for which

+ - A _
Yl(Hl) € 94 by the above reasoning. Let “0 = K + Be/2' Let 3

H: @ » @ be defined by H(B) = co 'r(v*(uo NB)). H is of

type 2 and is the composition of a B-condensing operator and the

o
Py .

rest B-nonexpansive. llence I is also B-condensing and Theorem 4.1

implies Il is asymptotically smooth. Since H(B) C H(B) we also %
have Tl asymptotically smooth. Let S = co Y+(H1) = ﬁ(nl). Then
H(S) ¢ S and hence ﬁn(S) is a decreasing sequence of sets which

approaches the nonempty compact set w_(S) = N T™(S) which is also
H n=1

convex and invariant under 1I. We also have w_(S) positively in-
H

variant under T. Let §, = wﬁ(s), S = ”1.m wir(s), and

SO = ”0 M wﬁ(S). Since K attracts ”1’ Ho dissipates Hl and
Sy dissipates Sl' Clearly, Y+(Sl) G SZ' Hence, Result 2,

Horn's theorem, implies T has a fixed point.

7. Remarks.

In this section we show how some of the proofs of Cooperman

e g e

and mine arc related, and also how one of Cooperman's results do i
not generalize to more arbitrary measures of noncompactness.

The important lemma used by Cooperman (8] to prove the

semi-continuity of the solution map for collectively a -condensing maps,
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is the following lemma, which we prove for B-condensing maps.

Lemma 7.1. Let An be a decrcasing sequence of bounded sets,

i.e. Aj DAy DA; ... . Let T be f-condensing with £ satisfy-

B(A) if B is a finite set and B(A + B) = B(A)

]

ing B(A U B)
if B(B) = 0. If there are two sequences {ik},{jk} such that

d(A. ,T(A. )) 0, then a(A.) -+ 0.
i Iy i

Remark: The result is also true if the condition B(A + B) = B(A)
if B(B) = 0 1is replaced by the condition that B8 is continuous

in the llausdorff metric. 1

Proof: Let I)1 = {{(xk,nk)} /xk £ T(Ank), e # o}, » V

If heb, he={€x,n)} let Ph= li {x;}. Let n =

: B 1

sup{B(Ph)/h € Dl}. Let g(h) = max{k/ ik € n).  Let

Di = H(yk,nk)}/ ) S Ank, nk-»w}, n, = sup{B(Ph)/ h € DZ}. We first

show ng = n,. Let h € D;s h = {(xk,nk)}, E(Ph) = B(P{(Xkynk)}) =

B(Pf(xk,j )J}). Now there is a sequence' {(yk,ig(nk))} eDz with

g(ny)

|yk-xk| » 0 since d(Aik,T(Ajk)) + 0. lHence, B(P{(xk,Jg(nk))})

BP{(yk’ig(nk))} 2 Mg llence, N € 0y Reversing the argument shows i

~

1

n, < Ny. lence, N, =n,. Now as in Theorem 4.1 there is an
* * ® i
1 with Bg(h ) = n - But there is an h' € DZ with TPh' = Ph ., |

h €D
So n > B(Ph') > B(TPh') = p(PR") = n,
if B(Ph') = 0. Hence, By 0 and Lemma 3.1 impliecs the existence

with cquality if and only

of a compact set which attracts An' lence, u(An) + 0.
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A result of Cooperman's [8] which does not generalize is the

following.

Theorem 7. 1 (Cooperman): Let X and Y be metric spaces, not
necessarily identical, and let T: X - Y be ¢-condensing., Let Y
be separable. Suppose Al D /\2 (RSN u(Ai) + & and a(T(Ai)) -+ &,
Then & = 0.

We give the following example to show it does not hold for

more general measures of noncompactness.

Example 7.1. Let T: L2[0,T] X R -+ Lz[0,1] X R be defined by

f
5 B
T(F.a) = 1 1 3
I(%,a) = <(4x-2) (2x - 7) xS
0 X < %

Let B C L2[0,1] X R, and let Br = {(_9;,a)/ where _9? is the
restriction of 5 0. 1x,1], (F.,a) € Bl. We define B(B) = 0 if
B is compact, otherwise B(B) = 1 + inf{r/ Br is compact in
120e.08, vk 10,000, Les A = WEHLEM HI P < 1, (o] 21,

F(x) =8 for x > -;- N %}. Then B(A_) »1, B(TA) »1% , and T is

B-condensing. Hence, the lemma does not hold in this case. We
notice T(An) appraches a compact set. The example could easily be
modified so it does not. Also B-satisfies most nice properties for

measures of noncompactness cxcept continuity in the Hausdorff

metric. If we assume B is continuous in the Hausdorff metric I

-

e el
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do not know if the lemma is truc.

8. Linear Condensing Maps.

References for this section are [10], [11]), [20], [28) and ([29].

Theorem 8.1. If T islincar and B-condensing with a B-mecasure of

noncompactness satisfying (i) B(A UB) = B(A) if B(B) = 0 and
(ii) B(A + B) = B(A) if B(B) = 0, then rC(T) < 1 where rc(T)

is the esscential spectral radius.

Definition 8.1. re(T) = inf r(T+A) where 7r(T+A) 1is the spectral
AEC
radius of T # A and C is the collection of compact operators.

Proof of Theorem 8.1: We will use the fact that 230 C op U o
where ¢ is the spectrum, Op is the point spe;trum, and O is
the continuous spectrum. Clearly o is bounded since T maps
bounded sets into bounded sets. Let BZ » {xf =} < 2}. Let

.

H: 4 » # be a sct operator with H(A) = T(A) N B H is clearly

2
B-condensing and of type 1. llence, Theorem 4.1 implies H is
asymptotically smooth. We will show 3o, C Bk for some k < 1

where B, = {z € C/ jz] <« k).

(a) If X e d0 |A] >1, and X € op then N(T-AI) (the
null space of T - AI) is finite dimensional. Otherwise there is
a sequence {x } with a({x }) = n> 0, ||xn|| = 1 such that

m_ 1
Txn Axn. But then a(H (Xm(xn})) u{xn} n> 0. Hence
a(ﬂm(Bl)) > n> 0 which contradicts the fact that H is

asymptotically smooth.
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(b) If X €30 |X >1 then R(T-AI)

¢l R(T-21), where
dim N(T-AI) < ®, Suppose R(T-AI) # ¢l R(T-AIL). Then the map 1
(T-AI)'I: R(T-AT) » X/N(T-AI) is unbounded. So there exists a
sequence {x_} € X/ N(T-AI), [lxnll =1 and a sequence {y } + 0
such that (T-M)xn e There is also an n > 0 such that
OL{xn} = n. For otherwise a cluster point, Xg € X/ N(T-AI) would

satisfy (T-Kl)xo = 0, which is a contradiction. It is now easily

verified that u(Hm(%m{xn})) = a({x_}) = n > 0. Hence, u(nm(ul))
n > 0 which again contradicts the fact that H is asymptotically

|

|

smooth. 1
4

(¢) 1f X € 8¢, |X|] > 1 then dim #(T-AI) < » where
H(T-2I) = c1{ U N(T-A1)} is the generalized null space of T - AI. i
Let T' be thgiicstriction of T to _#(T-A1), i.e. %
TY: _#(T=-X1) = _#(T-X1) with T'x = T(x). Since T* is also

B-condensing we have dim N(T'-XI') < o (a) and R(T'-AI) =
¢l ROF"<AEYY (b},
In this part we need to use the concept of an index. If

R(T-AI) = ¢l R(T-A1) 1let = dim N(T-AI) and B

1ot T-Al T

codim R(T-AI). The index, KT-AI =RE It is clear that

50 Sl 5 € |

if dim #(T-A1) = o then < -1. But it is known that the

o D%
index is constant on an open set, and for any X € p(T), the resolvent

set, Kp_yy = 0. This contradicts A € 30.

(d) If X e 3o, || > 1, then codim #(T-AI) < . We know
from (c) that dim A#(T-AI) < », Hence there is a normal splitting

of X = _#(T-\1) ® Y, for some subspace Y where (T-AI)Y - Y. Let

T* » A1': Y+ Y. Since N[T'-XI") = {0} and R(T'-xI'} = ¢l R(T'-AlY)

(b) we have o B - c%(T'-AI') LJoC(T'-AI'). Hence A g 30(T'-AI').
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S6 L& piT')y and T' - A1' is 1 -1 onto. Hence, codim R{T-X1) <=

(e) If X € 3o, |[A] >1 then A 1is a normal cigenvalue.

From (a), (b), (c¢), and (d) we have T BT-AI < o and
R(T-AI) = cl R(T-A1). lience, KT-AI is well-defined. Since

the degree is constant on an open set and X € 30 we have ]HZAI= 0

So, dim N(T-AI) = codim R(T-AI), and A is a normal ecigenvalue.

(f) The set of points in 30 N {A/ |Xx| > 1} is finite. We have
proved (e) that all thesc points are normal cigenvaluces. Hence they

are also isolated.

(g) Since we may introduce a finite dimensional operator A
which subtracts off the normal ecigenvalues with |[X| > 1, we get

30(T-A) C B, with B, = {1 e ¢/ |A] < 1}. Hence r_(T) < 1. Q.E.D.

7 VoA y “.},‘ﬂw ,“:‘.’}#’ow‘ Iy

S
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